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Abstract

Almost one fifth of human cancers worldwide are associated with infectious agents, either bacteria or viruses,
and this makes the possible association between infections and tumors a relevant research issue. We focused
our attention on the human Polyomavirus JC (JCPyV), that is a small, naked DNA virus, belonging to the Polyomaviridae
family. It is the recognized etiological agent of the Progressive Multifocal Leukoencephalopathy (PML), a fatal
demyelinating disease, occurring in immunosuppressed individuals.
JCPyV is able to induce cell transformation in vitro when infecting non-permissive cells, that do not support viral
replication and JCPyV inoculation into small animal models and non human primates drives to tumor formation.
The molecular mechanisms involved in JCPyV oncogenesis have been extensively studied: the main oncogenic
viral protein is the large tumor antigen (T-Ag), that is able to bind, among other cellular factors, both Retinoblastoma
protein (pRb) and p53 and to dysregulate the cell cycle, but also the early proteins small tumor antigen (t-Ag) and
Agnoprotein appear to cooperate in the process of cell transformation.
Consequently, it is not surprising that JCPyV genomic sequences and protein expression have been detected in Central
Nervous System (CNS) tumors and colon cancer and an association between this virus and several brain and non
CNS-tumors has been proposed. However, the significances of these findings are under debate because there is
still insufficient evidence of a casual association between JCPyV and solid cancer development.
In this paper we summarized and critically analyzed the published literature, in order to describe the current
knowledge on the possible role of JCPyV in the development of human tumors.
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Background
The Human Polyomaviruses (hPyV) are small, naked
viruses with icosahedral capsid and circular, double-
stranded DNA genome. They belong to the Polyomaviridae
family and are able to infect and establish latency in the
human host. The name “Polyomavirus” derives from the
Greek roots poly-, which means “many”, and –oma, which
means “tumors”. To date, at least thirteen human members
of the Polyomaviridae family have been identified.
The latest demonstration of the oncogenic potential of a

polyomavirus in humans, that has been ascribed to Merkel
cell PyV (MCPyV), rekindled increasing interest in this

viral family. MCPyV was isolated from the skin of a
patient affected by Merkel Cell carcinoma (MCC) showing
its ability to cause Merkel skin cancers [1]. However, the
hypothesis that some among the hPyVs might play an
etiological role in malignancies has been formulated more
than 40 years ago [2]. Based on experimental models, the
human polyomaviruses JC (JCPyV) and BK (BKPyV) have
been recently categorized by the International Agency for
Research in Cancer as “possible carcinogens”, although
studies in humans showed inconsistent evidence for an
association with cancers at various sites [3].
In this review, the hypothesis that JCPyV could play a

role in the development of Central Nervous System
(CNS) and colon tumors will be elucidated and in deeply
analyzed, based on the results and the reports published
in the most recent literature.
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JCPyV: epidemiology, structure, and life cycle
Humans are the natural hosts for JCPyV, that was
isolated in 1971 from the brain tissue of a Hodgkin
lymphoma patient, with initials J.C., who suffered from
Progressive Multifocal Leukoencephalopathy (PML) [4].
JCPyV is ubiquitous and its primary infection, occurring

during the childhood, is typically subclinical or linked to a
mild respiratory illness. Between the age of 1 and 5 years,
up to 50% of children show antibody to JCPyV, and by age
of 10 years JCPyV seropositivity can be observed in about
60% of the population [5, 6]. By early adulthood, as many
as 70–80% of the population has been infected [7].
Asymptomatic viral shedding in urine has been seen in
both healthy and immunocompromised patients [8]. The
mode of transmission for JCPyV is not yet well defined,
although the presence of JCPyV DNA in B-cells and
stromal cells of the tonsils and oropharynx supports
the hypothesis of a respiratory route of transmission,
with secondary lymphoid tissues serving as the potential
site for initial infection [9]. Nevertheless, JCPyV was found
also in raw sewage and in a high percentage of normal
tissue samples taken from the upper and lower human
gastrointestinal tract, suggesting that ingestion of contam-
inated water or food could be another portal of virus entry
[10–13]. Moreover, JCPyV footprints have been reported
in other many tissues of asymptomatic individuals, includ-
ing spleen, lymph node, lung, bone marrow, brain, B lym-
phocytes and kidney, the last thought as the major site of
JCPyV persistence.
The primary infection is followed by a lifelong, subclinical

persistence of episomal viral genome in the cells. In the
context of profound immunosuppression, the virus can
become reactivated, leading to the lytic destruction of the
oligodendrocytes, and the consequent development of
PML, a fatal demyelinating disease [10]. It is not well
assessed whether the immunosuppression of the host
promotes the viral spread from the latency sites to the
CNS or if JCPyV is already latent in the CNS and reac-
tivates [11, 12].
The structure of the JCPyV virion is characterized by a

non-enveloped, icosahedral capsid, measuring 40–45 nm
in diameter and comprising 88% proteins and 12% DNA.
The capsid is composed of three virus-encoded struc-
tural proteins, Viral Protein 1, 2, and 3 (VP1, VP2 and
VP3). VP1 is the major component, with 360 molecules
per capsid, and VP2 and VP3 contribute with 30–60
molecules each to the capsid. The icosahedron consists
of 72 pentamers with no apparent hexamers, each com-
posed of five VP1 molecules and one molecule of VP2 or
VP3. Only VP1 is exposed on the surface of the capsid,
and this determines the receptor specificity [13, 14].
The capsid surrounds a single, super-coiled, circular,

double-stranded DNA molecule of 5130 base pairs (bp),
in the case of the prototype JCPyV genome Mad-1 strain.

The viral genome is associated with cellular histones H2A,
H2B, H3 and H4 to form the so-called minichromosome,
structurally indistinguishable from host cell chromatin; the
viral particles do not contain linker histones, but the gen-
ome acquires them after entry into the host cell [13–15].
The viral genome of JCPyV is functionally divided into

three regions, called the genetically conserved early and
late coding regions, of about the same size, which are
separated by the hypervariable non-coding control region
(NCCR), containing the origin of viral DNA replication
(ori), the TATA box, binding sites for cellular transcription
factors and bidirectional promoters and enhancers for the
transcription of early and late genes. The NCCR of JCPyV
is the most variable portion of the viral genome within a
single virus. Viral DNA transcription and replication
occur bidirectionally starting from the NCCR: the early
transcription proceeds in a counterclockwise direction,
while the late transcription proceeds clockwise on the
opposite strand of DNA [16].
The early coding region spans about 2.4 kb and encodes

the alternatively spliced transforming proteins large tumor
antigen (T-Ag) and small tumor antigen (t-Ag), which are
involved in viral replication, and in promoting transform-
ation of cells in culture and oncogenesis in vivo. Three
additional proteins, named T’135, T’136 and T’165, due to
the alternative splicing process are also produced at high
level in the lytic cycle [17, 18].
T-Ag, a nuclear phosphoprotein of approximately 700

amino acids (aa), is considered the master regulator of
the infectious process, because it orchestrates the produc-
tion of early precursor messenger RNA (pre-mRNA), the
initiation of viral DNA replication and the activation of
late genes transcription. Moreover, by binding to the
hypophosphorylated form of the pRb, T-Ag allows for pre-
mature release of the transcription factor E2F, which stim-
ulates resting cells to enter the S-phase of the cell cycle.
T-Ag directly recruits the host cell DNA polymerase

complex to the origin in order to initiate bi-directional
DNA synthesis. Activation of the late viral promoter by
T-Ag and associated cellular transcription factors lead to
viral late gene expression [15].
t-Ag is a cysteine-rich protein of 172 aa, the first 80 of

which are shared with T-Ag. t-Ag role in the lifecycle of
JCPyV is not yet fully understood, though it is believed
to serve an ancillary role for T-Ag activity and cell trans-
formation [16, 19].
The late coding region spans 2.3 kb and contains the

genetic information for the major structural protein VP1
and the two minor structural proteins VP2 and VP3, that
are encoded from a common precursor mRNA by alterna-
tive splicing. The late region also encodes the Agnoprotein,
a small multifunctional protein, that participates in viral
transcriptional regulation, and inhibition of host DNA re-
pair mechanism [20]. Additionally, JCPyV encodes a pre-
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microRNA (miRNA) that is processed into two unique
miRNAs (JCPyV-specific miR-J1-5p and miR-J1-3p) during
the late phase of infection. Both miRNAs are capable of
downregulating the early phase protein T-Ag [21].
The infection of cell by JCPyV requires the binding be-

tween the viral VP1 and an N-linked glycoprotein with
sialic acid: JCPyV uses both the α(2,3)- and α(2,6)-linked
sialic acids to infect the permissive glial cells [22]. In
addition, JCPyV is able to bind the serotonin receptor,
5HT2AR, that is present on cells in the brain and in the
kidney, and to the ganglioside GT1b [23, 24]. Once the
virus has gained entry into the host cell, by clathrin-
dependent endocytosis [25], it travels to the cell nucleus,
where it is uncoated and transcription of the early region
begins. The early product T-Ag, back into the nucleus,
binds to the viral origin of replication and allows the
replication of the viral DNA, that depends by the avail-
ability of the cell DNA polymerase, replication protein A
(RPA) and with host enzymes and cofactors, expressed
in the S-phase of the cellular cycle [26]. As JCPyV repli-
cation proceeds, the late genes are expressed and the
late products, VP1, VP2 and VP3 begin to assemble with
the viral DNA, to form the complete virion. The final
viral products are released via host cell lysis [27].
There is another possible outcome to infection of a

cell by JCPyV: viral entry in nonpermisive cells, that do
not support viral replication, can end up with the cell
transformation or oncogenesis [28].

Molecular mechanisms of JCPyV transformation
mediated by T-Ag
The JCPyV principal actor, leading to cell transformation
and tumor development, is the early protein T-Ag. T-Ag
is a multifunctional protein, divided in several domains,
defined, from the N-terminal to the C-terminal, as fol-
lows: the DNaJ domain, linking to the cellular factor
HSc70; the LxCxE motif, that specifically binds and in-
activates the Rb family members; the Origin-Binding
Domain (OBD) that binds the JCPyV origin of replica-
tion; the NLS domain, that is necessary for the nuclear
localization of the protein; the Helicase domain (con-
taining the Zn and nucleotide binding domains), and,
finally, the p53 binding domain [29, 30]. All these
domains cooperate in binding to and inactivating cellu-
lar proteins that usually prevent the transition into S-
phase; consequently, JCPyV itself, drives the cell cycle
from G1 into S-phase. This event promotes viral repli-
cation and spread, when JCPyV infects permissive cells,
while it drives to cell transformation, when JCPyV
infects non permissive cells.
Basically, this progression is mainly the result of the

binding between the T-Ag LxCxE motif (aa 103–107)
and the members of the Rb tumor suppressor family
[31–33]. T-Ag sequestration of the hypophosphorylated

form of pRb enables the activation of the transcription
factors E2F1, −2, −3a and 3b, that in turn activate the
transcription of some genes, needed to enter the S-
phase of the cellular cycle, such as c-fos, c-Myc, cyclins
A,D1 and E, DNA polymerase alpha, thymidine kinas,
and others [29, 34–37]. The disruption of the complex
pRb/E2Fs is mediated by the J domain of T-Ag, that
binds to the Hsc70, a chaperone, increasing its ATPase
activity when associated with T-Ag; the energy produced
by the ATP hydrolysis is used to separate the pRb from
the E2Fs [38, 39]. In addition, T-Ag can bind other
members of the Rb family, that are p130 and p107 [40].
The p130-E2F4/5 association usually anchors a large
repressive complex; T-Ag contributes to disrupt the
complex p130-E2F4/5 and to release the brakes imposed
on cell proliferation [41].
The C-terminal region of T-Ag contains the p53-

binding domain [42]. P53 is a tumor suppressor, whose
levels are usually kept very low. In conditions of stress,
such as DNA damage or presence of oncogenes, p53 rap-
idly increases its transcription, the p53 protein is accumu-
lated and the DNA repair mechanism or the cell apoptosis
or senescence mechanisms are induced. When T-Ag binds
and inactivates p53, the growth arrest and the premature
cell death are avoided, while the cell cycle progression is
favoured also in presence of DNA damage [43, 44].
Additionally, other cellular proteins, such as insulin

receptor substrate 1 (IRS-1) [45], β-catenin [46, 47],
the neurofibromatosis type 2 gene product [48] and
the antiapoptotic protein survivin [49] are implicated
in binding to JCPyV T-Ag.
IRS-1 is a membrane associated tyrosine kinase, which

mediates both physiological and pathological responses in
the cell. Activated IRS-1 triggers cell proliferation, and
sends antiapoptotic signals. It has been shown that T-Ag
is able to bind directly to the IRS-1 and to cause its trans-
location into the nucleus and that this event has important
consequences in the homologous-recombination-directed
DNA repair (HRR) mechanism. In normal conditions, the
Insulin Growth Factor-I receptor (IGF-1R)/IRS-1 signaling
axis supports HRR: the mechanism involves a direct bind-
ing between hypophosphorylated IRS-1 and Rad51 in the
cytoplasm. Following IGF-IR stimulation, tyrosine phos-
phorylated IRS-1 loses the ability to complex Rad51, that
translocates to the nucleus, where it participates in hom-
ology search and intrastrand invasion to support faithful
DNA repair [50, 51]. Following T-Ag-mediated nuclear
translocation, IRS-1 binds Rad51 at the site of damaged
DNA and attenuates HRR. This indirect inhibition of HRR
is associated with an increase number of cells accumulat-
ing mutations, that may be the base of the development of
a malignant phenotype [45, 50, 52].
β-catenin is part of the Wnt pathway, that is involved

in cell proliferation, survival and transcription processes.
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Several mutations in the proteins belonging to this
pathway have been associated with the development of
different tumors [53, 54]. T-Ag binds to β-catenin
through the aa 82–628 and induces the stabilization of the
cellular protein, whose levels increase [55]. Additionally,
following the T-Ag interaction, β-catenin tranlocates into
the nucleus and induces the transcription of c-myc and
cyclin D1 [46].
The interaction between T-Ag and the neurofibromatosis

type 2 (NF2) gene product and its translocation to the
nucleus were also shown [48], but very few is known about
the consequences of this association [56].
Finally, it has been observed that the binding between

T-Ag and the antiapoptotic protein survivin leads to a
significant decrement of the apoptotic process [49]. Re-
activation of Survivin by JCPyV T-Ag can be a critical
step in prolonging cell survival, which allows JCPyV to
complete its replication cycle. Such a strong reactivation
of the normally dormant Survivin has been observed in
primary oligodendrocyte and astrocyte cultures infected
in vitro, and expressing T-Ag. This can be a critical step
in the transformation and proliferation of neural progen-
itors in vitro and in vivo [57].
T-Ag has also a direct mutagenic effect on the host

genome, by inducing spontaneous mutations in the in-
fected cells and cytogenetic alterations, both influencing
chromosomal stability and cell kariotype [58]. These
damages may precede the morphological transformation
[59] (Fig. 1).
The alternative T’ early proteins are also able to bind to

the Rb family components, with a particular affinity with
p107 (T’135 and T’136); moreover T’135 binds Hsc70 [31, 60].

Molecular mechanisms of JCPyV transformation
mediated by t-Ag
The t-Ag is encoded by the same mRNA that encodes
the T-Ag, following a mechanism of alternative splicing.
Consequently, the N-terminal 82 amino acids are the
same as the N-terminus of T-Ag, while the C-terminus

is an unique domain. The t-Ag is not studied as much as
T-Ag and the majority of the information regarding its
functions derives from what is known about the SV40 t-
Ag. SV40 t-Ag cooperates with T-Ag to enhance trans-
formation when T-Ag levels are low [61], it is required
for human cells transformation [62], and is needed to
keep high level of viral load in persistent infection of
human mesothelial cells [63]. It has been demonstrated
that, in contrast with SV40 t-Ag, JCPyV plays a relevant
role in viral replication, since t-Ag null mutant failed to
display detectable DNA replication activity [64].
The unique domain of the JCPyV t-Ag contains the

binding site for the Protein Phosphatase 2A (PP2A), a
serine/threonine –specific protein phosphatase that is
involved in the mitogen-activated protein kinase (MAPK)
pathway. The interplay between t-Ag and PP2A is also
mediated by the JCPyV Agnoprotein and the result of this
binding is an interference with the phosphatase activity of
PP2A [65] and the subsequent activation of pathways
inducing cell proliferation. Additionally, it has been shown
that t-Ag binds to the members of the Rb family pRb,
p107 and p130 and these associations are expected to
influence cell cycle progression [64] (Fig. 2).

Molecular mechanisms of JCPyV transformation
mediated by Agnoprotein
The JCPyV late genomic region encodes a regulatory
protein, known as Agnoprotein. It is a very small protein
of 71 aa in length, that was named “agno”, because when
its encoding ORF was discovered, no protein was associated
to it [66]. Agnoprotein is produced late in the infectious
cycle, but is not incorporated into the mature virion; add-
itionally, it is phosphorylated and it has been shown that
the posphorylation is necessary for the functionality of the
protein and the replication of the virus [67]. Over the years,
JCPyV Agnoprotein was demonstrated to bind to both viral
(T-Ag, t-Ag, VP1) and cellular (YB-1, p53, FEZ1, PP2A,
Ku70…) proteins [65, 68–74]. Consequently, it plays a role
in the viral transcription, translation, assembly and also in

Fig. 1 Molecular mechanisms of T-Ag induced- cell transformation. T-Ag binds to pRB family proteins, to βcatenin, p53 and IRS-1, inducing the
expression of many genes involved in the advancement of the cell cycle and/or interfering with the apoptosis and the NHEJ double stranded
DNA repair mechanism processes. Additionally, T-Ag promotes the induction of genetic instability
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the cell cycle progression. In particular, Agnoprotein binds
directly to p53 causing the arrest of the cell cycle in the
G2/M phase due to the activation of p21/WAF-1 promoter
[73]. The interaction of the Agnoprotein with Ku70 drives
to the inhibition of the non homologous end joining
(NHEJ) double stranded DNA repair mechanism, con-
tributing to the genomic instability conferred on cells
undergoing JCPyV infection [74]. As already explained
before, Agnoprotein is phosphorylated, but the binding
with PP2A causes its dephosphorylation; when PP2A is
sequestered by t-Ag, it cannot act as a phosphatase on
Agnoprotein, and this causes a downregulation of JCPyV
replication, but also an activation of the MAPK signaling
[65]. All together, the description of the characteristics of
the Agnoprotein demonstrated its importance in the
cellular transformation process [75] (Fig. 3).

JCPyV oncogenicity in experimental animals
The highly oncogenic potential of JCPyV has been well
established in different animal models, starting from
1973, when it has been shown that the inoculation of
the virus into the brain of newborn Golden Syrian
hamsters can lead to the development of unexpected
tumors, such as medulloblastoma, astrocytoma, glioblast-
oma multiforme, primitive neuroectodermal tumors and
peripheral neuroblastoma [2, 76, 77]. Astrocytoma, glio-
blastoma and neuroblastoma also developed after intracere-
bral inoculation of JCPyV into owl and squirrel monkeys
[78]. Interestingly, the tumor tissues taken from the ham-
ster and monkeys infected animals showed the presence of
the T-Ag protein, but neither the expression of other virion
antigens nor evidence of viral replication were found [79].

This is consistent with the fact that the animal cells may
not be permissive for the JCPyV replication and leads to
the consideration that JCPyV is able to transform the non
permissive cells also in the human populations [80].
Other evidences regarding the JCPyV oncogenicity come

from studies on transgenic mice, generated to contain the
entire T-Ag coding sequence under the control of its
own promoter, and without any other viral genes. Adrenal
neuroblastoma, pituitary adenoma, malignant peripheral
nerve sheat and medulloblastoma were the tumors in-
duced by the expression of the only early protein [81–84].

JCPyV and human CNS tumors
The ability of JCPyV to transform cells, such as human
fetal glial cells and primary hamster brain cells, has been
demonstrated in vitro. Furthermore, JCPyV was able to
induce different types of brain tumors after injection in
hamster, owl and squirrel monkeys [2, 85, 86]. Transgenic
mice expressing the JCPyV early region were shown to
develop adrenal neuroblastomas, tumors of primitive neu-
roectyodermal origin, tumors arising from the pituitary
glan, glioblastoma multiforme, primitive neuroectodernal
tumors and malignant peripheral nerve sheath tumors
[28, 48, 80], and others.
All the molecular mechanisms previously described in

this review appear to be involved in the JCPyV induced -
neural oncogenesis, mainly due to the interaction of T-Ag
with several cellular factors. Specifically, the binding
between T-Ag and pRb promotes the cell cycle pro-
gression, while the T-Ag/p53 complex leads to the in-
hibition of the apoptosis process [28]; the interaction
between the JCPyV early protein and IRS-1 or β − catenin
is a key factor of the malignant transformation in children
medulloblastoma [55, 87].
The first evidence of an association between the presence

of JCPyV and a human tumor was reported in 1961, when
Richardson [88], who first described PML, diagnosed an

Fig. 2 Molecular mechanisms of t-Ag induced- cell transformation.
t-Ag binds to PP2A, activating several pathways that promote cell
proliferation, including the MAPK pathway

Fig. 3 Molecular mechanisms of Agnoprotein induced- cell
transformation. Agnoprotein binds to several viral and cell factors,
such as T-Ag, HIV-Tat, p53, Ku70, PP2A, YB-1 dysregulating cell
cycle progression
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oligodendroglioma in a patient with concomitant chronic
lymphocytic leukemia and PML. After the identification of
JCPyV as the etiologic agent of PML, investigations
focused on the possible association with brain tumors
were conducted and at least ten cases were published,
reporting the concomitant development of CNS neoplasia
and PML [89, 90]. These clinical observations repre-
sent a strong proof that JCPyV may be involved in the
pathogenesis of both the CNS diseases.
Detection of JCPyV sequences and/or protein expres-

sion in primary CNS malignancies has been frequently
reported also in immunocompetent and/or immunosup-
pressed patients without PML. These reports regarded a
wide variety of CNS neoplasia: gangliocytoma, choroid
plexus papilloma, pilocytotic astrocytoma, subependymoma,
pleomorphic xanthoastrocytoma, oligodendroglioma, all
subtypes of astrocytoma, ependymoma, oligoastrocytoma,
glioblastoma multiforme, medulloblastoma, pineoblastoma,
gliosarcoma and primitive neuroectodernal tumors, as
reported in Table 1.
The percentage of JCPyV positive CNS tumor tissues

was highly variable, ranging from 20 to 75%, with regard
to the JCPyV genome and from 20 to 68% with regard to
the JCPyV protein expression. Interestingly, the studies
focusing on the viral protein expression were able to
detect the viral early proteins T-Ag in the nuclei and
Agnoprotein in the perinuclear area of the cells, but never
the late VP1 protein (Table 1). These data are consistent
with the fact that most of the CNS cells are non permissive
for the JCPyV replication, and that the transforming ability
of T-Ag appears limited to neural origin tissue.
Despite the increasing evidence of an association

between JCPyV and the CNS tumors, it cannot be
omitted that there is a lack of consistency in different
studies that failed to detect both viral genome and
protein expression in several types of tumors, such as
meningioma [91], oligodendroglioma, astrocytoma [92],
glioblastoma multiforme [93], glioma, and medulloblatoma
[94]. Del Valle and colleagues hypothesized that the wide
discrepancy in the viral genome and proteins detection,
even within similar tumors, should be ascribed to the differ-
ent types of collected samples, and to the employment of
different techniques. They pointed out the fact that DNA
isolated from formalin-fixed paraffin-embedded is usually
of inferior quality than those isolated from fresh/frozen
tissues and this may cause false negative results. The sensi-
tivity of the routinary used amplification methods (PCR,
nested PCR, quantitative-PCR, southern blot hybridization)
is another important issue, that should be taken into
account, since it can increase the rate of the false negative
results [80].
The wide ubiquity of JCPyV, however, was demonstrated

by the fact that some studies have underlined the presence
of viral genomic sequences, but not DNA expression, also

in brain from healthy immunocompetent subjects, with
neither PML nor CNS malignancies [95–99].
This notable observation raises the question of whether

the JCPyV found in CNS tumors may have a role in the
pathogenesis of the malignancies or whether the brain is a
latency site for JCPyV.
The model proposed by Perez-Liz [98] and colleagues

and Del Valle and colleagues [80] made an effort in
organizing all the puzzle pieces: following the primary
infection, JCPyV establishes latency also in the brain
and it does not replicate its genome neither express its
proteins. In case of profound immunodepression, the
virus can infect permissive cells, such as oligodendrocytes
and induce a lytic cycle, exiting in the destruction of the
infected cells and the subsequent development of PML.
On the other hand, transient physiological changes may
occur in normal individuals, allowing the expression of
the T-Ag, and resulting in the accumulation of this onco-
genic protein in brain cells. The result would be the inter-
action of T-Ag with the host proteins deputized to the cell
cycle control, the promotion of uncontrolled cell division
and the stimulation of tumor formation [100].

JCPyV and human colorectal cancer
It is well assessed that JCPyV is commonly excreted in
the urine of both immunocompetent and immunode-
pressed subjects and this is also demonstrated by the find-
ings of JCPyV genome and complete virion in the raw
urban sewage from around the world [101, 102] The inges-
tion of food and/or water contaminated with this virus eas-
ily leads to the infection of the gastrointestinal tract by
JCPyV, whose structure is particularly resistant at very low
pH (up to 1) in raw water [103, 104]. As described here
below, an increasing number of studies, conducted
worldwide, have reported the presence of JCPyV gen-
omic sequences and the expression of T-Ag in tissues
from gastrointestinal tumors, including esophageal
carcinoma [105], gastric carcinoma [106–108], spor-
adic adenomatous polyps [109], and colorectal adeno-
carcinomas [110–117], but also in normal tissues and
in adjacent noncancerous tissue from the gastrointes-
tinal tract [118].
In the context of colorectal cancer, JCPyV seems to

be a cofactor for the induction of the chromosomal
instability [58, 119, 120], but it also interacts with the
β-catenin protein with the consequent enhanced acti-
vation of Wnt pathway target genes, such as c-Myc
and Cyclin D1. Both c-Myc and Cyclin D1 are involved
in cell cycle control and progression and their en-
hanced activation, mainly due to the intervention of T-
Ag, could result in unchecked cell cycle progression,
high proliferation rate, and ultimately a more malignant
phenotype [46, 47, 121].
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Table 1 Detection of JCPyV in primary central nervous system tumor

Tumor Reference Detected/sampled (%) Detection method

DNA Proteins DNA Proteins

Adenocarcinoma [143] 1/3 (33.3) - qPCR -

Anaplastic Astrocytoma [144] 6/15 (40.0) - qPCR -

[78, 145] 3/4 (75.0) 0/4 (0.0) PCR, SB IHC (T-Ag)

Anaplastic Ependynoma [91] 0/1 (0.0) - PCR -

Anaplastic Meningioma [91] 0/1 (0.0) - PCR -

Anaplastic Oligoastrocytoma [144] 0/2 (0.0) - qPCR -

Anaplastic Oligodendroglioma [78, 145] 2/3 (66.7) 2/3 (66.7) PCR, SB IHC (T-Ag)

[144] 3/8 (37.5) - qPCR -

Astrocytoma [146] 4/10 (40.0) 1/10 (10.0) nPCR IHC (T-Ag)

[147] 1/3 (33.3) 1/3 (33.3) nPCR, PCR IHC (T-Ag)

[78, 145] 10/16 (62.5) 7/16 (43.8) PCR, SB IHC (T-Ag)

[148] 1/5 (20.0) - nPCR -

[144] 31/78 (39.7) - qPCR -

[144] 5/12 (41.7) - qPCR -

[143] 1/3 (33.3) - qPCR -

[149] 6/19 (31.6) - qPCR -

[150] 0/23 (0.0) - PCR -

Chroid plexus papilloma [151] 1/5 (20.0) 1/5 (20.0) PCR, SB IHC(T-Ag,Agno)

[150] 0/14 (0.0) - PCR -

Ependyomomas [145] 5/6 (83.3) 4/6 (66.7) PCR, SB IHC (T-Ag)

[151] 5/18 (27.8) 4/18 (22.2)
3/18 (16.7)

PCR, SB IHC(T-Ag,Agno)

[147] 0/2 (0.0) 0/2 (0.0) nPCR, PCR IHC (T-Ag)

[146] 1/5 (20.0) 0/5 (0.0) nPCR IHC (T-Ag)

[150] 1/34 (2.9) - PCR -

[148] 0/2 (0.0) - nPCR -

[143] 0/1 (0.0) - qPCR -

[149] 0/5 (0.0) - qPCR -

Gangliocytoma [147] 0/1 (0.0) 0/1 (0.0) nPCR, PCR IHC (T-Ag)

[148] 0/1 (0.0) - nPCR -

Gangliogioma [149] 2/5 (40.0) - qPCR -

Glioblastoma [144] 20/51 (39.2) - qPCR -

[150] 2/102 (2.0) - PCR -

[148] 11/21 (52.4) - nPCR -

[149] 19/39 (48.7) - qPCR -

Glioblastoma Multiforme [78, 145] 12/21 (57.1) 5/21 (23.8) PCR, SB IHC (T-Ag)

[152] 1/100 (1.0) 1/100 (1.0) PCR, SB IHC (T-Ag)

[147] 7/13 (53.8) 7/13 (53.8) nPCR, PCR IHC (T-Ag)

[153] 1/100 (1.0) 1/100 (1.0)
1/100 (1.0)

PCR IHC(T-Ag,Agno)

[143] 0/7 (0.0) - qPCR -

Glioblastosis celebri [78, 145] 1/100 (1.0) 1/100 (1.0) PCR, SB IHC (T-Ag)

Gliosarcoma [149] 2/5 (40.0) - qPCR -

Lymphoma [149] 1/7 (14.3) - qPCR -
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Table 1 Detection of JCPyV in primary central nervous system tumor (Continued)

Medulloblastoma [154] 11/16 (68.8) 9/16 (56.3) 11/16(68.8) PCR, SB IHC (T-Ag)

[155] 0/8 (0.0) 0/8 (0.0) PCR, SB IHC (T-Ag)

[156] 11/23 (47.8) 4/23 (17.4) PCR, SB IHC (T-Ag)

[157] 0/15 (0.0) 0/15 (0.0) PCR, SB IHC (T-Ag)

[158] - 0/22 - IHC (T-Ag,Agno)

[151] 0/32 (0.0) 0/32 (0.0) PCR, SB IHC (T-Ag)

[143] 0/1 (0.0) - qPCR -

[149] 2/5 (40.0) - qPCR -

[150] 0/21 (0.0) - PCR -

[91] 0/2 (0.0) - PCR -

Meningioma [150] 0/15 (0.0) - PCR -

[148] 3/8 (37.5) - nPCR -

[91] 1/1 (100.0) - PCR -

[143] 6/12 (50.0) - qPCR -

Oligoastrocytoma [78, 145] 5/8 (62.5) 2/8 (25.0) PCR, SB IHC (T-Ag)

[159] 1/100 (1.0) 1/100 (1.0) PCR IPPt (T-Ag)

[143] 0/1 (0.0) - qPCR -

[149] 2/3 (66.7) - qPCR -

[144] 2/6 (33.3) - qPCR -

Oligodendroglioma [148] 1/2 (50.0) - nPCR -

[149] 4/12 (33.3) - qPCR -

[143] 0/2 (0.0) - qPCR -

[78, 145] 4/7 (57.1) - PCR, SB -

[160] 13/15 (86.7) 8/18 (44.4)
10/18(55.6)

PCR, SB IHC (T-Ag,Agno)

[147] 1/2 (50.0) 1/2 (50.0) nPCR, PCR IHC (T-Ag)

[146] 1/5 (20.0) 0/5 (0.0) nPCR IHC (T-Ag)

[144] 5/17 (29.4) - qPCR -

Pilocytic Astrocytoma [78, 145] 4/5 (80.0) 1/5 (20.0) PCR, SB IHC (T-Ag)

[151] 0/7 (0.0) 0/7 (0.0) PCR, SB IHC (T-Ag,Agno)

Pineocytoma [147] 0/1 (0.0) 0/1 (0.0) nPCR, PCR IHC (T-Ag)

[143] 0/2 (0.0) - qPCR -

[149]. 1/3 (33.3) - qPCR -

[148] 0/1 (0.0) - nPCR -

Pituitary adenoma [143] 0/3 (0.0) - qPCR -

Pleomorphic xanthoastrocytoma [161] 1/1 (100.0) - nPCR -

Rare brain tumors [149] 0/6 (0.0) - qPCR -

Schwannoma [143] 5/14 (35.7) - qPCR -

sPNET [157] 0/5 (0.0) 0/5 (0.0) PCR, SB IHC (T-Ag)

Subependymoma [91] 0/1 (0.0) - PCR -

[78, 145] 1/1 (100.0) 1/1 (100.0) PCR, SB IHC (T-Ag)

Xanthoatrocytoma [143] 0/1 (0.0) - qPCR -

Legend: qPCR quantitative PCR, nPCR nested PCR, IHC immunohistochemistry, SB Southern Blot, IPPt immunoprecipitation, sPNET supratentorial primary
neuroectodermal tumor
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Overall, 18 different studies evaluated the presence of
JCPyV in colorectal cancer, including studies that were
aimed to identify only the viral genomic sequences or both
viral genomic sequences and viral protein expression.
The first paper was published in 1999 by Laghi and col-

leagues and reported the presence of the T-Ag genomic
sequence in 12 tissues samples out of 46 analyzed tissues
(23 pairs of normal colorectal epithelium and adjacent
cancers). The authors also showed that larger number of
viral copies was present in cancer cells than in non-
neoplastic colon cells [110]. The same research group also
demonstrated some years later that 81.2% of normal co-
lonic tissues and 70.6% of normal tissues from the upper
gastrointestinal tract contained the T-Ag DNA sequences
[104]. The presence of the JCPyV genome was confirmed
by Enam and colleagues, who found 22 out of 27 tissues
of malignant tumors of the large intestine positive for the
presence of the T-Ag DNA; the expression of the onco-
genic proteins T-Ag and Agnoprotein was observed only
in 14 of these samples [46]. In adenomatous polyps of the
colon, that are premalignant lesions, JCPyV T-Ag DNA
sequences were found to be frequently present (82%), and
T-Ag was found to be expressed specifically in the nuclei
of 16% of these samples [109].
The remaining 14 studies evaluated the presence of JCPyV

in colorectal cancer cases and controls. Eleven of them were
extensively reviewed by Chen and colleagues in 2015 [118].
Additionally, a new case–control study was published in
2015, regarding JCPyV DNA in immunocompetent
colorectal patients from Tunisia [117]. The remaining
two studies focused on immunosuppressed patients and
will be analyzed later [122, 123].
Taken together, ten papers reported the data obtained

by the employment of Polymerase Chain Reaction
(PCR), nested-PCR or quantitative PCR for the search of
viral genomic sequences in a total of 746 colorectal
cancer tissues and of 828 normal tissues (both adjacent
noncancerous or tissues from healthy controls). Overall,
256/746 (34.3%) colorectal cancer tissues and 120/
828(14.5%) were positive for the presence of the JCPyV
genome [112, 115, 124–129]. Additionally 240 adenoma
tissues were analyzed and compared with 257 normal
tissues from healthy controls: JCPyV DNA was found in
77 adenoma (32.1%) and 48 normal (18.7%) tissues,
respectively (Table 2) [115, 127, 128]. The expression
of the JCPyV proteins was analyzed only in 4 studies
[126, 130–132] and it has been observed that the early
T-Ag protein was present in 9 out of 172 (5.2%) colo-
rectal cancer or adenoma tissues and in 7 out of 38
(18.4%) adjacent noncancerous tissues or normal tissues
from healthy controls (Table 3). Rollison and colleagues
and Lundstig and colleagues collected blood samples from
colorectal patients, and healthy controls and found a total
of 210 (41.3%), and 179 (38.4%) seropositive subjects out

of 509 colorectal patients, and 466 and healthy subjects
(Table 3) [130, 131].
Interestingly, Selgrad and colleagues [122] and Boltin

and colleagues [133] highlighted the important issue of
JCPyV infection in the gastrointestinal tract in immuno-
suppressed patients. In particular, Selgrad and colleagues
focused their attention on liver transplant patients who
developed colorectal neoplasia and they showed that
both the viral genome and early protein were present in
higher percentage in colorectal mucosa and adenoma
tissues from transplant patients than in non transplant
patients. The hypothesis that has been formulated based
on this finding was that the use of immunosuppressive
agents may contribute in the reactivation of the virus
and that the expression of T-Ag may represent a risk for
the developing of neoplasia in immunosuppression con-
ditions [122]. Similarly, Boltin and colleagues reported
that JCPyV T-Ag DNA was more prevalent in the upper
and lower gastrointestinal mucosa of 38 immunosup-
pressed patients than in the gastrointestinal mucosa of
48 immunocompetent subjects, possibly indicating that
the virus resides in these patients. This may account for
the higher prevalence of gastrointestinal carcinomas in
immunosuppressed patients.
A very innovative starting point for the next research

studies on the association between JCPyV and colorectal
cancer comes from a recent publication, reporting that
JCPyV specific miR-J1-5p miRNA could be used as a
potential biomarker for viral infection in colorectal patients,
since JCPyV miRNA lower expression was showed in the
stools from patients with colorectal cancer, compared to
healthy subjects [134]. However, the role of JCPyV
miRNA in the development of the neoplasia remains to
be elucidated.
Taken together, these reports demonstrated the presence

of both JCPyV genome and proteins in tumor tissues, but
also in the normal adjacent part or in normal colorectal
mucosa and only in two studies the JCPyV prevalence was
significantly higher in patients than in controls [112, 124].
Consequently, it is not possible yet to affirm whether
JCPyV should be considered as an etiological cofactor, a
risk factor or a simple bystander in the development of
colorectal cancer. To this regard, Coelho and colleagues
hypothesized that JCPyV might participate in different
steps of the colorectal carcinogenesis: its latency might
favor a transient inflammatory reaction, generating a
microenvironment rich in cytokines, which can pro-
mote the expansion of transformed cells; the binding
between T-Ag, Agnoprotein and several cell proteins
might induce genetic instability, that can drive to irrevers-
ible genetic damages. The mechanism employed by JCPyV
for inducing tumorigenesis might be the “hit and run”,
where PyV infection is associated with the early stages of
tumorigenesis, but is not needed for the progression of
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the disease, and this could explain why JCPyV gen-
ome/proteins were not always detected in the tumor
tissues [135].

Conclusions
Almost one fifth of human cancers worldwide are associ-
ated with infectious agents, either bacteria or viruses, and
this makes the potential association between infections and
tumors a relevant research issue. It is well assessed that the
exposure to some viruses, such as Human Papillomavirus
[136], Hepatitis B Virus [137], Human T leukemia virus
[138] and MCPyV [1], can trigger the development of
cervical carcinoma, liver carcinoma, leukemia and MCC,
respectively. In this article, we have reviewed data

concerning the possible link between JCPyV with CNS
tumors and colorectal cancer.
Some of the biological features of JCPyV makes it a

fully compatible candidate as risk factor of human
tumors, because (a) it is usually acquired early in life;
(b) it establishes a persistent infection in the host; (c)
it encodes oncoproteins that interfere with tumor
suppressors pathways, thus altering the normal pro-
gression of cell cycle; (d) it causes cancer in laboratory
animals, and (e) viral sequences are often detected in
human tumors. However, some other characteristics
are not consistent with the known pattern of viral
oncogenesis: it is ubiquitous in the human population
and its genome/proteins can be easily detected in bio-
logical samples from healthy individuals; the length of
infection is not determinable, since the primary infec-
tion is asymptomatic. In addition, it is well known that
environmental and/or host cofactors could modulate
the tumor pathogenesis, where viral infections could
play a trigger role in the first step of transformation
mechanism.
Some guidelines have been provided in order to prove

cancer causation by a viral infection. JCPyV should have
all the following requirements for being definitely associ-
ated to the development of CNS tumors and colon cancer:
(a) the presence of its genome/proteins should be higher
in cases than in controls; (b) the infection should always
precede the disease symptoms; (c) the virus should have a
highest prevalence in the geographical area where there is
a highest prevalence of the tumor; (d) the virus should be
able to transform human cell in vitro and to induce cancer
in animal models [139, 140]. While JCPyV fulfills the
second and the last criteria, it is difficult to apply the
other two criteria to JCPyV: in fact it is ubiquitous in
nature, but only a limited fraction of infected subjects
develops disease; in addition, a variable time occurs
between infection and the development of a cancer,

Table 2 Studies comparing JCPyV DNA prevalence between
cases and controls

Reference Positive cases/total
cases (%)
Type of Sample

Positive controls/total
controls (%)
Type of Sample

[125] 0/233 (0%)
CRC tumor tissue

1/233 (0.4%)
Adjacent noncancerous
tissue

[128] 49/80 (61.3%)
CRC tumor tissue

6/20 (30.0%)
Healthy tissue

15/25 (60.0%)
Adenoma tissue

[115] 6/23 (26.1%)
CRC tumor tissue

0/20 (0%)
Healthy tissue

1/21 (4.8%)
Adenoma tissue

[126] 15/18 (8.3%)
CRC tumor tissue

13/16 (81.2%)
Adjacent noncancerous
tissue

[112] 19/22 (86.4%)
CRC tumor tissue

0/22 (0.0%)
Adjacent noncancerous
tissue

[129] 0/94 (0.0%)
Adenoma tissue

0/91 (0.0%)
Healthy tissue

[124] 56/137 (40.9%)
CRC tumor tissue

34/137 (24.8%)
Adjacent noncancerous
tissue

11/80 (13.8%)
Healthy tissue

[127] 12/14 (85.7%)
CRC tumor tissue

40/100 (40.0%)
Healthy tissue

55/60 (91.7%)
Adenoma tissue

[132] 38/114 (33.3%)
CRC glandular/stromal
tissue

2/20 (10%)
Healthy glandular/stromal
tissue

6/40 (15.0%)
Adenoma glandular/stromal
tissue

[117] 61/105 (58.1%)
CRC tumor tissue

13/89 (14.6%)
Adjacent noncancerous
tissue

Table 3 Studies comparing JCPyV protein prevalence between
cases and controls

Reference Positive cases/total
cases (%)
Type of Sample

Positive controls/total
controls (%)
Type of Sample

[126] 9/18 (50.0%)
CRC tumor tissue

7/18 (38.9%)
Adjacent noncancerous
tissue

[132] 0/114 (0.0%)
CRC glandular/stromal tissue

0/20 (0.0%)
Healthy glandular/stromal
tissue

0/40 (0.0%)
Adenoma glandular/stromal
tissue

[131] 152/386 (39.4%)
CRC patient’s blood

168/386 (43.5%)
Healthy subject’s blood

[130] 58/123 (47.2%)
CRC patient’s blood

11/80 (13.8%)
Healthy subject’s blood
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making markers of exposure difficult to evaluate along
the carcinogenic process [141]. Moreover, these criteria
do not consider that some viruses, such as, probably,
JCPyV may employ an “hit and run” oncogenic mech-
anism, where the virus induces cell transformation and,
subsequently, is silenced or even lost during tumor pro-
gression [142].
At the light of all these observations, a causative role

of JCPyV in human cancers is still to be defined, but,
despite the “inadequate evidence of carcinogenicity in
humans”, the WHO International Agency for Cancer
Research Monograph Working Group decided to classify
JCPyV as “possibly carcinogenic to humans”, belonging
to group 2B, on the basis of the “sufficient evidence in
experimental animals” [3]. Since the presence of JCPyV
has been demonstrated in multiple human tumor tissues,
it is reasonable to hypothesize that it could play a role as
relevant cofactor in human tumorigenesis.
Therefore, only further solid, clear-cut epidemiologic,

histopathologic and DNA evidence will ultimately settle
this urgent issue and will help to answer the still unsolved
question: “Does JCPyV cause tumors in the human popu-
lation?” When a complete understanding is reached, a vac-
cination approach for the prevention of JCPyV infection
may be proposed, based to the fact that JCPyV infection is
acquired early in life and that, besides its possible trans-
forming ability, this virus causes PML, a disease with no
available and specific treatment.
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